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Abstract

The e�ects of shear and elongation on drop deformation are examined through numerical simulation
and experiment. A two-dimensional formulation within the scope of the boundary element method
(BEM) is proposed for a drop moving under the in¯uence of an ambient ¯ow inside a channel of a
general shape, with emphasis on a convergent±divergent channel. Both the drop and the suspending
¯uid can be either Newtonian or viscoelastic of the Maxwell type. The predicted planar deformation is
found to provide accurate description of the physical reality. For example, small drops, ¯owing on the
axis, elongate in the convergent part of the channel, then regain their circular form in the divergent part,
con®rming the experimental observations. Drops placed o�-axis are found to rotate during the ¯ow.
These drops thus have longer residence time as well as larger and irreversible deformation than those
moving on the axis. Both theory and experiment show a di�erence in deformability for Newtonian and
viscoelastic drops in a slit ¯ow. Initially, a Newtonian drop is reluctant to deform, but then deformation
is rapid. A viscoelastic drop initially deforms readily, but then the deformation slows down. The slit
¯ow does not ¯atten drops whose diameter is at least 10 times smaller than the slit gap. The e�ects of
shear and elongation stress, the viscosity ratio, the drop diameter-to-channel-gap ratio, the initial drop
position, the interfacial tension, and elasticity of the dispersed and ambient phases were examined using
the BEM. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

This paper examines the interplay between shear and elongation during drop deformation in
convergent±divergent channels, with reference to mixing. Preparation of polymer blends
requires the mechanical mixing of at least two macromolecular species (and additives) for
optimal morphology. Most blends are prepared in either a single- or a twin-screw extruder
where the ¯ow is dominated by shear. Mixing in the shear ®eld is de®cient. To generate the
same deformation in shear ¯ow, a greater amount of energy is required than in extensional
¯ow (Erwin, 1991). More importantly, shear ¯ow is incapable of dispersing liquids with
viscosity four times that of the matrix liquid. The extensional ¯ow ®eld is more e�cient for
generating the dispersive as well as the distributive mixing (Grace, 1971).
Numerous authors have pointed to the great potential of the extensional ¯ow for e�cient

mixing of immiscible liquids having large di�erences in rheological properties, particularly the
drop-to-suspending ¯uid viscosity ratio, RZ, at constant stress. For example, ¯ow of 30 wt%
polyamide-6, PA-6, dispersed in high density polyethylene, HDPE, at T= 1508C (that is 798C
below the melting point of PA-6) results in ®brillation of the PA-6 domains. The calculated
extensional stresses at the entrance of the die, s11=50±800 kPa, far exceeds the measured
tensile yield stress at this temperature, s=15 kPa (Utracki et al., 1986). The theoretical and
experimental works of Erwin (1991) on the laminar mixing demonstrated that: (i) the
deformation of the dispersed phase at the same imposed strain (as measured by the generated
interfacial area) is far greater in extension than it is in shear; (ii) the rate of spatial separation
of two material points in extension is greater than that in shear by several orders of magnitude;
and (iii) the energy required to generate the same increase of the interfacial area in extension is
substantially lower than that required in shear (e.g. at current-to-initial interface ratio of 1000,
the energy per unit volume consumed in extensional mixing is 6800 times smaller than in
shear). Other studies, with Newtonian or non-Newtonian systems, con®rmed these
observations. For example, Han (1981) and his collaborators reported that the extensional ¯ow
breaks up drops passing through a convergence into mini-drops with diameters one order of
magnitude smaller. Elmendorp's calculations demonstrated a great advantage of the `stretching
and folding' mechanism of mixing in extensional ¯ow (Elmendorp, 1986).
During the last 20 years, several authors made use of extensional ¯ow mixing for the

polymeric systems. For example, Suzaka (1982) patented an extensional ¯ow mixer, which was
composed of a series of plates placed across the ¯ow channel. A polymer blend was forced to
pass through a series of convergences and divergences, which elongated the drops and then
dispersed them. However, all ori®ces were of the same size, and the stresses decreased from the
®rst plate to the next. As a result, the mixer provided good mixing for only some systems.
Furthermore, the device could be optimized only by trial and error. Any change in the resin
required the process to be interrupted, the mixing unit to be replaced, and the optimization to
be repeated. In consequence, the mixer was not commercially explored. More recently, Utracki
and coworkers (Nguyen and Utracki, 1995; Bourry et al., 1998) designed, tested and patented
an extensional ¯ow mixer, EFM.
Although the initial experimental results on extrusion through the EFM have been highly

encouraging, the problem of understanding the mechanism leading to the successful operation
of the device has not been resolved; optimization of the geometry and the processing
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conditions remain heavily dependent on empiricism. Several geometrical and materials
characteristics, which are known to a�ect the quality of mixing in the convergent±divergent
¯ow, will be examined in this study. These factors usually determine the relative e�ect of shear
or elongation on drop deformation, and a�ect both the dispersive and distributive mixing.
Since drop deformation in a (con®ned or uncon®ned) medium represents a problem of the
moving-boundary type, the boundary-element method (BEM) is ideally suited for the treatment
of this problem.
While extensive work has been devoted to the modeling and simulation of drops deforming

in an in®nite ¯uid medium, relatively little work has been done in the case of a drop deforming
in a con®ned domain. In both cases, most simulations were carried out using the BEM. The
reader is referred to Rallison (1984) for a review. More recently, the BEM has been extended
to include the motion of a drop in the vicinity of a plane wall (Pozrikidis, 1990; Ascoli et al.,
1990), and a deformable interface (Yiantsios and Davis, 1990). The deformation of drops in
con®ned ¯ow was analyzed inside a circular straight tube (Martinez and Udell, 1990;
Pozrikidis, 1992), and in a tube with constriction (Tsai and Miksis, 1994). These studies,
however, examined only axisymmetric motion. The drop deformation was therefore con®ned
along the axis of the channel.
The present paper is part of a series of studies on the application of the BEM to problems in

mixing, polymer processing and interfacial phenomena (Khayat et al., 1995, 1997, 1998; Boury
et al., 1998). The study focuses on the planar deformation of a drop in a convergent±divergent
channel for drops moving along and o� the channel axis. The suspending ¯uid and drop can
be either Newtonian or viscoelastic. The mathematical foundation for the method in the case
of a Newtonian system (drop and suspending ¯uid) was already established elsewhere (Khayat
et al., 1997). The general boundary-element formulation for a linear viscoelastic ¯uid developed
by Khayat et al. (1998) will be applied to examine viscoelastic drop/matrix systems.
The inherent transient nature of the ¯ow process and the presence of a moving interface

between drop and suspending ¯uid make the simulation challenging because of the
nonlinearities involved in the description of the interface (Floryan and Rasmussen, 1989). The
challenge becomes even greater if both inertia and non-Newtonian e�ects are accounted for
(Bird et al., 1987; Khayat and Garcia-Rejon, 1992; Mao and Khayat, 1995). Nonlinear e�ects,
such as those stemming from ¯uid elasticity, ¯uid inertia and shear thinning, are di�cult to
account for in a boundary-element approach despite the advent of recent techniques to handle
nonlinear and transient problems (Wrobel, 1987; Nowak, 1995; Neves and Brebbia, 1991;
Frayce and Khayat, 1996).
The boundary integral equations for viscoelastic ¯uids that are used in the current study are

derived and solved in the time domain. This approach is unlike many existing BEM
formulations for linear viscoelastic problems, which are carried out in the frequency domain.
The derivation of the boundary integral equation is based on the Laplace transform of the ¯ow
variables. The association of the integral transform of the viscoelastic solution with that
corresponding to the Newtonian ¯ow problem is similar to the correspondence principle for
linear viscoelastic solids or the elastico-viscoelastic analogy (Christensen, 1982). The proposed
procedure involves replacing the viscosity by the appropriate form in the transformed
equations, and reinterpreting the transformed ¯ow variables as transformed viscoelastic ®eld
variables. The transformed equations are solved, and the solution is inverted, leading to the
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evolution of the ¯ow ®eld in the time domain. In the present formulation, however, the
inversion is avoided, and the boundary integral equations are obtained in the time domain. A
time marching scheme is then implemented to determine the evolution of the drop/matrix
interface (Khayat et al., 1997, 1998).

2. Problem formulation

In this section, a boundary integral equation is developed for a Maxwell ¯uid to determine
the deformation of a drop in a con®ned medium. Further details on the formulation and
assessment of the accuracy of the proposed approach, as well as other applications are
discussed elsewhere (Khayat et al., 1997, 1998).

2.1. Governing equations

Consider a drop of viscosity Zd and relaxation time ld, moving under the in¯uence of a
suspending ¯uid of viscosity Zs and relaxation time ls. At any instant, the drop occupies a
region Od(t ) and is neutrally buoyant, so the e�ects of gravity and any external body forces are
neglected. The suspending ¯uid occupies the outer region, Os(t ), and is driven by an imposed
pressure gradient. The regions Os(t ) and Od(t ) are assumed to be separated at all times by a
moving interface, Gi (t ). Thus, situations where the drop comes in contact with the boundary
of the channel, Gc, or where the drop breaks up into smaller droplets are excluded. The region
Os(t ) is always bounded by Gi (t ) and Gc. Both the drop and the suspending ¯uid are viscous
and incompressible. The ¯uids of interest are typical molten polymers of high viscosity
subjected to small strain rates during processing. Thus, only low-Reynolds-number ¯ow,
typically characterized by small velocities, small length scales and/or high viscosity, will be
considered. In this limit, the inertia terms in the momentum equation are negligible, and the
two-phase system is in a state of creeping motion. The conservation of mass and momentum
equations in each region may be written as:

r � ua�x,t� � 0 r � sssa�x,t� � 0 x 2 Oa�t� �1�
The subscript a=d and s, corresponding to a variable in the drop and suspending ¯uid region,
respectively. Here H is the gradient operator, x is the position vector, ua (x, t ) is the velocity
vector, and sssa (x, t ) is the total stress tensor. In terms of the hydrostatic pressure pa (x, t ) and
excess stress tensor ttta (x, t ), sssa (x, t )=ÿpa (x, t )I+ttta (x, t ), where I is the unit tensor. All
dependent and independent variables have been made dimensionless using a reference length,
L, for spatial coordinates, a typical ¯ow velocity, U, for the velocity components, L/U for
time, and ZsU/L for stress and pressure. These reference parameters will be de®ned later when
a given ¯ow geometry is examined.
The ¯uids are assumed to obey the linear viscoelastic constitutive equation of the Maxwell

type. In dimensionless form,

Wed

@tttd�x,t�
@t

� tttd�x,t� � RZ�rud�x,t� � �rud�x,t��t� x 2 Od�t� �2a�
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Wes
@ttts�x,t�
@t

� ttts�x,t� � rus�x,t� � �rus�x,t��t x 2 Os�t� �2b�

Three dimensionless groups have been introduced in the current problem, namely the two
Weissenberg numbers, Wea, in Oa (t ), and the drop-to-suspending-¯uid viscosity ratio, RZ:

Wea � laU
L

RZ � Zd

Zs

�3�

It is clear from the governing equations (1) and (2) that, unlike the viscosity ratio, the ratio of
the relaxation times does not constitute a similarity parameter. There are two other similarity
groups, namely, the aspect ratio of the channel and the capillary number. This latter will be
de®ned later when the in¯uence of interfacial tension is examined.
The boundary conditions are the same as those for a Newtonian system. These conditions

consist of the dynamic and kinematic conditions at the interface, and no-slip and no-
penetration conditions at the channel wall. Poiseuille ¯ow is assumed to hold at the entrance
and exit of the channel. Both the drop and the suspending ¯uid are assumed to be at a state of
rest initially. For further details, the reader is referred to Khayat et al. (1997).

2.2. Boundary integral equations for drop deformation

The integral equation for general viscoelastic ¯ow was derived elsewhere for one-phase ¯ow
(Khayat et al., 1998). Only a summary of the derivation is given here. The ®rst step in deriving
the integral equations consists of taking the Laplace transform of the conservation equations
(1), ®nding that the transformation conserves the same form of the initial continuity and
momentum equations in the Laplace domain. An expression is thus obtained from Eq. (2) for
the transformed excess stress in terms of the transformed rate-of-strain tensor, which is
mathematically equivalent to Newton's law of viscosity. The formulation is then pursued as if
the problem corresponded to the ¯ow of a Newtonian ¯uid in the frequency domain.
The integral equation in the time domain is obtained by taking the inverse Laplace

transform of the integral equation in the frequency domain. The derivation of the resulting
equations in the Oa (t )[Ga (t ) domain is carried out similarly to single-¯uid ¯ow (Khayat et
al., 1998), leading to:�

Gc[Gi�t�
n�y,t� �

�
Wes

@ssss�y,t�
@t

� ssss�y,t�
�
� J�x j y� dGy

ÿ
�
Gc[Gi�t�

n�y,t� � us�y,t� �K�x j y� dGy � cs�x,t�us�x,t� x 2 Os�t� [ Gc [ Gi�t�
�4a�

�
Gi�t�

n�y,t�
RZ
�
�
Wed

@sssd�y,t�
@t

� sssd�y,t�
�
� J�x j y� dGy ÿ

�
Gi�t�

n�y,t� � ud�y,t� �K�x j y� dGy

� cd�x,t�ud�x,t� x 2 Od�t� [ Gi�t�
�4b�
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The term ca (x, t ) takes the same meaning as for Stokes ¯ow for x $ Oa (t )[Ga (t ), and it
depends on time since the domain occupied by the ¯uid changes with time. It is obvious that,
for the present problem, Oa (t )=Od(t ) and Ga (t )=Gi (t ) for the ¯uid occupying the drop
region, and Oa (t )=Os(t ) and Ga (t )=Gs(t )0Gi (t )[Gc for the suspending ¯uid. Here J and K
are second and third rank tenors, which are also the same for Stokes ¯ow (Khayat et al.,
1997).
The ®rst step in solving Eqs. (4a) and (4b) consists of introducing a ®nite-di�erence

approximation in time to handle the stress derivatives (Khayat et al., 1998). Two coupled
integral equations that govern the velocity at the interface and the traction at the channel wall
are then obtained similarly to those corresponding to the Newtonian system (Khayat et al.,
1997) with extra source (boundary) integrals involving the stress at the previous time step.

3. In¯uence of shear and elongation in convergent-divergent ¯ow

In this section, the planar deformation of droplets subject to the ¯ow of the suspending ¯uid
inside a con®ning channel is examined. The accuracy of the method was previously assessed
elsewhere (Khayat et al., 1995, 1997) and will not be pursued here. Although the ¯ow in
channels of arbitrary geometry may easily be handled by the current formulation, the
computations are con®ned to a symmetrical, hyperbolic convergent-divergent channel. The
following in¯uential geometric and materials characteristics of the two-phase system will be
investigated in this section:

. Drop size relative to the channel dimension(s).

. Drop-to-suspending-¯uid viscosity ratio.

. Initial drop distance from the channel axis.

. Initial horizontal drop position relative to the channel entrance.

. Interfacial tension at the drop interface.

. Relaxation times of drop and suspending ¯uid.

The size of the drop and its initial position relative to the axis of the channel are particularly
important. These factors determine the relative dominance of shear and elongation e�ect from
the suspending ¯uid on drop deformation. Thus, if the drop is large relative to the channel
opening, or positioned away from the channel axis, then the in¯uence of shear ¯ow, originating
from the channel wall, is signi®cant. On the other hand, if the drop size is relatively small, or
the drop moves close to the channel axis, then the elongational ¯ow dominates.
The deformation of a large and low-viscosity drop in the convergent-divergent channel is

typically illustrated in Fig. 1. The reference length, L, is taken as the half-length of the
channel. The dimensionless length of the channel is then equal to 2, the entrance and exit
widths are each equal to 1.4, and the neck width is equal to 0.14. Poiseuille ¯ow is imposed at
the entrance and exit of the channel, and the maximum velocity is taken as the reference
velocity, U. Throughout this section, the channel width-to-length ratio will be ®xed to 0.7. For
these and all subsequent calculations in this geometry, the number of boundary elements is
®xed equal to 96 along the channel boundary, and 48 along the drop/¯uid interface. Both
¯uids in Fig. 1 are assumed to be Newtonian (Wed=Wes=0) interfacial tension e�ects are
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neglected (Caÿ1=0). The viscosity ratio RZ=2 and the initial (dimensionless) drop diameter
D0=0.1. The evolution of the drop shape is shown at various positions along the channel axis.
The drop stretches in the converging ¯ow region, reaches maximum elongation in the neck
region, and recovers its initial (circular) shape as it nears the exit. This symmetric recovery is
not always possible as will be seen next.

3.1. In¯uence of drop size

The in¯uence of shear and elongation on drop deformation is ®rst investigated by examining
the in¯uence of the initial drop size D0 and viscosity ratio RZ. The relative deformation, a(t ),
of the drop is taken as the relative change of the current perimeter of the drop, P(t ), at time t,
with respect to the initial perimeter, P0, i.e. a(t )=[P(t )ÿP0]/P0. This de®nition of the
deformation is reasonable given the convoluted shape that the drop may assume during
deformation. The evolution of a may be plotted against either time or position along the
channel axis. The time representation, however, is found to be more revealing of the
deformation dynamics.
Two viscosity ratios are examined for three initial sizes of a drop deforming along the

channel axis. For a relatively low viscosity ratio, RZ=2, the results are shown in Fig. 2 for
three values of the initial drop diameter D0=0.02, 0.06 and 0.1. The top of the ®gure displays
the change in drop shape with position along the channel axis, while the lower part displays
the evolution of the corresponding relative deformation as a function of time. The results
re¯ect an essentially similar shape evolution for the three drops; there is practically no e�ect of
the initial drop size on the subsequent deformation for a relatively small value of the viscosity
ratio, RZE2. Typically, the deformation reaches a maximum in the neck region, and decreases
as the drop recovers its initial shape (there is symmetry in deformation). One may conclude
that, for relatively small viscosity ratio, and for a relatively small drop initially placed on the

Fig. 1. Newtonian drop of initial diameter D0 =0.1 and viscosity ratio RZ=2 ¯owing through a hyperbolic
convergent±divergent ¯ow channel (Wes=Wed=Caÿ1=0). The ®gure shows the channel geometry and the drop

deformation along the channel axis.
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channel axis, the relative deformation is essentially independent of the drop size, as it is due
mainly to elongation; shear e�ects are negligible. Even for large drops, the relatively low drop
viscosity allows the drop to stretch signi®cantly enough in the neck region for elongation
e�ects to remain predominant. This argument may be taken to the limit of an air bubble
(RZ4 0); the deformation of large and small bubbles is essentially the same!
For a relatively high viscosity ratio, the situation is di�erent. As the viscosity ratio further

increases, the deformation becomes progressively more di�cult, and the drop behaves like a
solid. The evolution of drop shape and corresponding relative deformation for RZ=10 is
depicted in Fig. 3. In contrast to the situation illustrated in Fig. 2, here the drops do not
recover their initial circular shape in the exit region. This is particularly evident for the larger
drops. Furthermore, as the drops exit from the neck region, their rear end ¯attens. As evident
from the magnitude of the relative deformation, a(t ), more viscous drops elongate less. The a-
curves also indicate that larger drops undergo higher deformation and show a loss of shape
recovery (symmetry). This lack of symmetry is caused by the low elongation in the neck region
and the shear e�ects that a�ect the outer region of the drop. Obviously, the shear e�ects are
greater for the larger dropÐthis was already evident in the non-circularity of D0=0.1 drop in
Fig. 2 as the drop nears the exit. Furthermore, the results indicate that the maximum relative

Fig. 2. In¯uence of the initial drop size on deformation for 0.02ED0E0.1 and RZ=2 (Wes=Wed=Caÿ1=0). The

evolution of the drop shape along the channel axis is shown in the upper part of the ®gure, and that of the
deformation is shown in the lower part. Note the symmetry in deformation with respect to neck region.
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deformation occurs earlier for the smaller drops, slightly ahead of the maximum convergence.
Thus, while small drops moving along the channel axis tend to experience mainly extensional
¯ow regardless of the viscosity ratio, larger drops become signi®cantly subjected to shearing,
especially those of moderate or large viscosity ratios.

3.2. In¯uence of viscosity ratio

The in¯uence of the viscosity ratio was extensively explored previously (Khayat et al., 1997).
Some of the earliest work on the theory of the small deformation at low Reynolds numbers
was carried out by Taylor (1932, 1934), who considered three-dimensional (3D) drop
deformation in elongational ¯ow at constant strain rate, e. . The deformation was assumed to be
small enough for the shape of the deformed drop to remain close to spherical. De®ning the
droplet deformation as kd(t )=D(t )/D0, where D(t ) is the current droplet major axis and D0 is
the initial drop diameter, the evolution of droplet deformation with time was predicted as:

Fig. 3. In¯uence of the initial drop diameter on deformation for 0.02ED0E0.1 and RZ=10
(Wes=Wed=Caÿ1=0). The evolution of the drop shape along the channel axis is shown in the upper part of the
®gure, and that of the deformation is shown in the lower part. Symmetry is observed only for the smallest drop.

Note the loss in symmetry for all three drops.
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kd�t� � 1� 5

2RZ � 3
_et �5�

At small strains, the local elongation imposed by the suspending ¯uid is simply:

k�t� � e_et � 1� _et �6�
leading to the following relation

kd�t� ÿ 1

k�t� ÿ 1
� 5

2RZ � 3
�7�

Palierne (1990) showed that the Eq. (7) also holds for an arbitrary time-dependent ¯ow
provided that the deformation remains small.
In the present case, the rate of elongation of the suspending ¯uid is estimated by placing a

drop of equal viscosity (RZ=1) in the neck region. The ratio of the relative deformation of a
drop of arbitrary viscosity ratio to a drop of relative viscosity equal to one is then extrapolated
to the initial time, t = 0. Fig. 4 shows the behavior of this limit as function of the viscosity
ratio. The diameter of the drops considered is too small (D0=0.02) for shear e�ects from the
walls to be signi®cant. The results shown in Fig. 4 are in qualitative agreement with the
behavior predicted by Taylor (1932, 1934) and Palierne (1990) as expressed in Eq. (7). The
deformation ratio is equal to 1 for RZ=1. When RZ > 1, the ratio asymptotically decreases to
zero as RZ41. On the other hand, when RZ 4 0, the ratio of the deformations increases
asymptotically to 5/3, not to about 2 as predicted by Eq. (7). This discrepancy, although small,
is due to the fact that the present results are based on a con®ned and not in®nite ambient ¯ow.

Fig. 4. In¯uence of the viscosity ratio on the deformation of a relatively small drop of initial diameter D0=0.02 and
the viscosity ratio RZ $ [0.01, 100] (Wes=Wed=Caÿ1=0). The ratio of the drop deformation to the deformation of
the ¯uid matrix is plotted against RZ.
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In this case, the ¯ow cannot be purely elongational. In addition, the present formulation is
two-dimensional whereas Eq. (7) is based on a 3D formulation.

3.3. In¯uence of initial position

In this section, the e�ect of the drop initial position will be examined. The drop may be
initially located either o� the channel axis (vertical shift), or on the channel axis at di�erent
distances from the neck center (horizontal shift). Thus, if the drop is initially positioned far
from the channel axis, then the in¯uence of shear ¯ow in the vicinity of the channel wall
should be signi®cant.
The e�ect of initial distance from the channel axis is examined for a drop of initial diameter

D0=0.02 and two viscosity ratios: RZ=4 and 10. The results are presented in Figs. 5 and 6,
respectively. To assess the in¯uence of the initial position, the evolution was monitored for
three drops, nos 1, 2 and 3. Drop 1 is initially placed on the axis (at y = 0.7), drop 2 is
initially located 0.2 o� the axis ( y = 0.5), and drop 3 is initially located 0.3 o� the axis
( y = 0.40). As the results in Fig. 5 indicate, the initial displacement of the drop in¯uences
both the rate and the magnitude of drop deformation. Thus, drop 2 deforms similarly to drop
1 but at a slower pace. As it reaches the neck region and approaches the channel axis, it
stretches slightly more than drop 1. Furthermore, the ®gure also indicates that in the

Fig. 5. In¯uence of the initial position for drops 1, 2 and 3, located o� the channel axis by distances: 0, 0.2 and 0.3,
respectively. The size of the drops is D0=0.02 and RZ=4 (Wes=Wed=Caÿ1=0). The evolution of the drop shape
inside the channel is shown in the upper part of the ®gure, and that of the deformation is shown in the lower part.
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convergent part of the channel, drop 2 tends to be swept away from near the channel wall
toward the channel axis. As the drop comes out of the neck region, it is swept back into the
region near the wall, where (see a versus t dependence), similarly to drop 1, it recovers its
initial shape. For drop 3, the deformation is still slower and larger than that of drop 2. In the
divergent zone, the drop begins to recover some of its circular shape but eventually stretches
again as it heads towards the exit. At this point, in contrast to drops 1 and 2, the drop remains
signi®cantly stretched and never recovers its initial shape. The in¯uence of shearing is clearly
important. The maximum deformations shown in Fig. 5 varied from 50% (drop 1), to 55%
(drop 2), and to 125% (drop 3). It should be noted that the residence time within the channel
of drop 3 is 2.22 times longer than that of drop 1.
The calculations that lead to the results shown in Fig. 5 were repeated for RZ=10, and the

results are shown in Fig. 6. Drop 1 moves along the channel axis, and it is included again for
reference. Its deformation is symmetric with respect to the neck of the channel. Initially, drop 2
deforms similarly to drop 1, but at a rate roughly twice smaller than that of drop 1. In
contrast to the behavior shown in Fig. 5 where the maximum in a increases as the drop is
displaced farther from the axis, here the maximum decreases from 9% for drop 1 to about 5%
for drop 2. The reason for this decrease is the rotation of the drop. The drop compression
within the convergent part of the channel prohibits the stretching before the expected

Fig. 6. In¯uence of the initial position for drops 1, 2 and 3, located o� the channel axis by distances: 0, 0.2 and 0.3,

respectively. Diameter of the drop is D0=0.02 and RZ=10 (Wes=Wed=Caÿ1=0). The evolution of the drop shape
inside the channel is shown in the upper part of the ®gure, and that of the deformation is shown in the lower part.
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maximum deformation could occur at the neck. However, as the rotation slows down in the
divergent part of the channel, the drop becomes subjected to further extension.
The shear ¯ow component for drop 3 is greater than that for drop 2 as Fig. 6 indicates. The

shear e�ect leads to the occurrence of a rotation of the slightly elongated drop. The rotation
causes the drop to repeatedly stretch and compress as it ¯ows through the channel. In this
case, the maximum deformation reaches only about 6%. Similarly to drop 2, drop 3 is also
more stretched in the divergent part of the channel, where the rotation rate slows down. Thus,
for relatively large viscosity ratios, shearing has a minor in¯uence on the drop deformation, its
main e�ect is to generate the rotation of slightly deformed particles.
The orientation angle, b, of drop 3 (between its major axis and the channel axis) with respect

to time and position is shown in Fig. 7. For the sake of completeness, the relative deformation
from Fig. 6 is also included. The initial orientation angle b=0.6p is taken to coincide with the
orientation that the drop assumed a right position after the ®rst increment in time. The drop
appears to orient itself along the (local) tangent to the channel wall. As it moves away from
the channel entrance, the angle increases along with the relative deformation until the drop
becomes parallel to the channel axis, b=p, reaching the ®rst maximum in deformation. Next,
there is a sharp drop in the orientation angle, b4 0. The change of orientation generates the

Fig. 7. Orientation of drop 3 (from Fig. 6) located 0.3 o� the channel axis, having diameter D0=0.02 and RZ=10

(Wes=Wed=Caÿ1=0). Evolution of the relative deformation, a(t )=[P(t )ÿP0]/P0, as well as of the angle, �p, that
the drop major axis makes with horizontal is plotted versus time in the lower part.
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compressive force that at ®rst eliminates the initial elongation, a4 0, then compresses the
drop, thus causing the deformation to locally increase (a4 0.05). As the drop comes from the
neck region, again it orients itself parallel to the channel axis, which causes a sharp increase in
relative deformation. The drop appears to deform further from this point onwards undergoing
relatively pure extension as the angle of orientation remains constant.
Additional insights on the role of shear and elongation are obtained by examining the

in¯uence of the viscosity ratio on the same drop size and location. In Fig. 8, the deformation
of drop 3 (D0=0.2, vertically displaced by 0.3; see Fig. 5) is shown for the range of RZ $ [4,10].
The ®gure illustrates the overall decrease in deformation as the drop viscosity increases. There
is a signi®cant shift in the ®rst maximum to the left, indicating that, as the drop viscosity
increases, the drop tends to reach maximum deformation earlier. The curves in Fig. 8 should
be compared with those in Fig. 4. The reason is related to the period of rotation of the drop,
tp. Theory predicts that tp=2p( p + 1/p )/g. , where p is the aspect ratio and g. is the shear rate
(Goldsmith and Mason, 1967). Thus, the fastest rate of rotation is expected for spheres, the
slowest for long ®bers or ¯at discs. As the viscosity increases, the drop deformation decreases,
p4 1, and the period of rotation increases. This translates, on the one hand, in compression
of the drops to occur sooner, and, on the other, in a larger number of extrema.

Fig. 8. In¯uence of the viscosity ratio, RZ $ [4, 10], on the deformation of drop 3 from (from Fig. 7) located 30 mm
o� the channel axis, having diameter D0=0.02 and RZ=10 (Wes=Wed=Caÿ1=0).
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Next, consider the in¯uence of the initial horizontal shift on the deformation for relatively
large drops ¯owing on the channel axis, having viscosity ratio RZ=4 and initial diameter
D0=0.1. The results are depicted in Fig. 9. One of the drops is initially located near the
channel entrance (labeled as drop 1 in the following text) and is monitored as it deforms in the
converging part of the channel. The second drop is initially located at the center of the channel
neck (labeled as drop 2), and is monitored as it deforms in the divergent part of the channel.
Fig. 9 displays the shape and the deformation, a(t ) at various stages of ¯ow for D0=0.1. Note
that the position scale is the same for drops 1 and 2. The two drops cover essentially the same
distance but deform di�erently, one in the converging part and the other in the diverging part.
As before, drop 1 tends to deform slowly near the entrance and stretches rapidly as it reaches
the neck region. Drop 2 deforms signi®cantly more. In this case, a(t ) tends to be roughly linear
with t. In contrast to drop 1, drop 2 deforms typically like a drop subjected to shear ¯ow.
Drop 2 is more strongly a�ected by the shear ¯ow in the neck region. In consequence, it
reaches a relative deformation three times larger than that of drop 1.

3.4. In¯uence of interfacial tension

So far the e�ect of interfacial tension has been neglected. The capillary number, Ca, is
expressed in terms of the maximum shear rate, U/H, in the neck region of the suspending ¯uid

Fig. 9. In¯uence of the initial position on drop deformation. The initial drop diameter is D0=10 mm and viscosity

ratio RZ=4 (Wes=Wed=Caÿ1=0). The drop is located on and is moving along the channel axis. Thus, the relative
deformation, a(t ), is plotted against time for the drop located initially near the channel entrance (drop 1), and in the
neck (drop 2).
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(where H is neck width), Zs, D0, and the interfacial tension n. Thus, Ca=D0UZs/nH. The
calculations show that for a small drop (D0=0.02), the evolution of deformation is essentially
independent qualitatively from interfacial tension, at least for the range Caÿ1 $ [0, 25) and
RZ $ [4,10]. The drop tends to recover its initial shape. The time, t, of recovery is shorter as
Caÿ1 increases. Thus, as expected, interfacial tension tends to reduce the drop deformation in
the convergence and accelerates recovery of the drop in the divergence. The relaxation time, t,
depends strongly on Ca. This dependence is illustrated in Fig. 10 as t is plotted against Caÿ1

for RZ=4 and 10. For both viscosity ratios, t decreases monotonically with Caÿ1, with a
sharper drop for the smaller relative viscosity.

3.5. In¯uence of ¯uid elasticity

The in¯uence of ¯uid elasticity is now examined in the absence of interfacial tension
(Caÿ1=0) for several values of the Weissenberg numbers Wed and Wes. So consider ®rst the
deformation of a small drop of initial diameter D0=0.02 moving along the channel axis. The
viscosity ratio RZ=5. The evolution of the relative deformation is shown in Fig. 11. The case
of a Newtonian drop moving in a Newtonian matrix (Wes=Wed=0) is included for reference.
The ®gure indicates that a Newtonian drop (Wed=0) deforms less as the elasticity of the
suspending ¯uid increases. This decrease in deformation is evident from the curves Wes $ [0,

Fig. 10. Dependence of the time, t, the drop takes to relax from the maximum deformation a to zero as function of
Caÿ1. The initial drop diameter is D0=0.02, and the relative viscosity RZ=4 (lower curve) and 10 (upper curve)
(Wes=Wed=0).
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6 � 10ÿ3]. In this case, deformation is symmetric as the drop recovers its circular shape near
the exit. For a viscoelastic drop moving in a Newtonian suspending ¯uid, the deformation
increases as Wed increases (see the curves corresponding to Wes=0, Wed $[0, 6 � 10ÿ3]). In
this case, symmetry is lost gradually as the drop ¯uid elasticity increases.
The fact that ¯uid elasticity tends to enhance deformation is somewhat surprising, as one

expects elasticity to oppose deformation (one can easily picture the stretching of an elastic
band to be much more di�cult than that of a liquid band!). However, the results shown in Fig.
11 are based on a linear (Maxwell) constitutive model, which describes the true ¯uid behavior
under conditions of small deformation rates only. To illustrate the role of elasticity more
clearly, consider the deformation of a drop of relaxation time l and viscosity Z in purely
elongation ¯ow in the x direction. The ambient ¯uid exerts a stress txx inducing a rate of strain
@ux/@x over the drop domain that is given by:

Fig. 11. In¯uence of ¯uid elasticity on drop deformation for a small drop (D0=0.02, RZ=5 and Caÿ1=0) moving
along the channel axis. The curves correspond to the evolution of deformation for a viscoelastic drop in a
Newtonian matrix, with Wes=0 and Wed $ [0, 6 � 10ÿ3], and a Newtonian drop in a viscoelastic matrix with

Wes $ [0, 6 � 10ÿ3] and Wed=0. Note that the curve Wes=Wed=0 corresponds to a Newtonian system.
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where the transient term has been approximated by ®nite di�erence. For a Newtonian ¯uid,
the deformation is equal to t kxx/Z, which shows that drops with smaller viscosity tend to
undergo higher deformation. The second equality in Eq. (8) indicates that, for l$0, there is
an additional contribution to t kxxÿt k ÿ 1

xx if the stress increases with time. Thus, in situations
where the drop is initially stress free, the stress (magnitude) can only grow in time, leading to
the additional contribution. This is indeed the present case, as the stress is assumed to be
initially equal to zero. This assumption may not be realistic, since at t = 0 the drop
immediately adjusts to, and starts moving with the surrounding ¯ow.
The results in Fig. 11 are in agreement with the ®ndings of Bous®eld et al. (1986), who

considered the breakup of viscoelastic ®laments. They followed the evolution of an imposed
disturbance on a ®lament of dilute polymer solution obeying the Oldroyd-B constitutive
equation (Bird et al., 1987) using a transient ®nite-element solution and a one-dimensional thin
®lament approximation. They found that the disturbance initially grows much more rapidly on
the viscoelastic ®lament (see Fig. 8 in the paper by Bous®eld et al., 1986).
It is worth noting that, in the absence of interfacial tension, the deformation is

independent of the ¯uid elasticity when the relaxation time of the drop is the same as that of
the suspending ¯uid (Wed=Wes). In fact, deformation is the same as that corresponding to a
Newtonian system. Of course, the value of the actual tractions at the channel wall and at the
interface changes with the level of elasticity, but the kinematics (drop deformation) of the
¯ow remains the same. The absence of dependence of a(t ) on Wed=Wes becomes obvious
once the tractions on both sides of the drop/matrix interface are eliminated between Eqs. (4a)
and (4b). When Eq. (4b) is multiplied by RZ and subtracted from Eq. (4a), one ends up
with the di�erence in tractions and that of their time derivatives on either sides of Gi (t ). In
the absence of interfacial tension these two di�erences are zero, which leads to an integral
equation for the velocity at the interface independent of Wes and Wed (see Khayat et al., 1997,
1998).
Finally, another issue worth exploring is the e�ect of the ratio of relaxation times or Wed/

Wes. As mentioned earlier, unlike RZ, the ratio of the relaxation times is not a similarity group.
It is thus important to see what e�ect it has on drop deformation as Wed and Wes are varied
while keeping the ratio constant. The e�ect can be depicted from Fig. 12 for a relatively large
drop (D0=0.1) moving along the channel axis and RZ=10 (Caÿ1=0), when the drop-to-matrix
relaxation-time ratio is kept equal to 2, Wed $ [0.004, 0.048] and Wes $ [0.002, 0.024]. The top
part of the ®gure displays the evolution of the drops for each case, and the corresponding
evolution of drop deformation is shown in the lower part of the ®gure. The ®gure indicates
that deformation is essentially the same in the convergent part as the drop typically elongates
like a relatively small viscosity (Newtonian) drop. In the lower Wed range, a drop typically
deforms like a high-viscosity drop by recuperating some of its circular shape as it nears the
exit. In this case, the drop deforms little but shear e�ects are somewhat signi®cant. As Wed
increases further deformation increases. The drop remains signi®cantly deformed in the
divergent zone and elongation e�ects remain predominant. It is thus obvious that the ratio of
the relaxation times is not a similarity parameter.
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4. Experiment and the slit-¯ow model

The purpose of the present experimental study is to examine the drop deformability in
convergent slit ¯ow and compare it to predictions of the boundary-element method. Both
Newtonian and non-Newtonian ¯uids are studied with RZ > 1.

4.1. Experimental setup

The experiments were performed in a convergent-divergent slit cell, shown in Fig. 13. The
cell is symmetrical, with 30 mm long convergent and divergent parts (608 convergence and
divergence) connected with two parallel plates either 79 or 130 mm long. The slit gap between
these plates was kept constant at H= 3.2 mm. In the ®gure, the variable, 0 < r (mm) < 33, is

Fig. 12. In¯uence of the ¯uid elasticity for large drops of relaxation time equal twice that of matrix ¯uid (Wed/
Wes=2) moving along the channel axis. The initial diameter of the drops is D0=0.1 and RZ=10 (Caÿ1=0). The
evolution of the drop shape along the channel axis is shown in the upper part of the ®gure, and that of the

deformation is shown in the lower part. Drops 1±4 correspond, to (Wes=0.004, Wed=0.002), (0.012, 0.006), (0.024,
0.012) and (0.048, 0.024), respectively.
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also de®nedÐit is the distance from the origin of the convergence toward the entrance to the
cell. The matrix ¯uid was circulated through the cell by means of compressed air. A manual
valve was used to control the ¯ow. First, a drop of the dispersed liquid was injected into the
stationary matrix using a Hamilton syringe. The injected ¯uid was removed from the needle by
inducing the matrix ¯uid to ¯ow at low rate for a brief period. After the ¯ow was stopped, a
spherical drop was formed near the needle tip.
The syringe needle can be inserted into any horizontal position across the conical entry zone,

i.e. it is possible to inject the drop directly to the axial ¯ow (where the extensional e�ects are at
maximum), or o�-axis where the drops are subjected to combined shear and elongation. The
drop deformation studies were performed at relatively low ¯ow rates of the matrix, controlled
by pre-selected pressure gradient. The shape of the drops was monitored and recorded using a
Sony CCD video camera. Some sequences were scanned to determine the kinetics of drop
deformation and/or recovery. In these cases, the position, velocity, and shear rate were
computed from the initial position to the time needed to reach the end of the cell.

4.2. Model ¯uids

For the Newtonian matrix ¯uids, polydimethylsiloxane, PDMS, and corn syrup, were used.
The drops were formed using one of the following liquids:

1. Newtonian polymeric ¯uids.
2. Viscoelastic `Boger' ¯uid (based on high molecular weight polystyrene, PS, dissolved in a

solution of medium molecular weight PS in DOP).
3. Viscoelastic solution of polyacrylamide, PAM, in water.

Values of the shear viscosities were determined as: Zs=6±60 Pas for the matrices; and
Zd=13.5±600 Pas for the drops, see Table 1.

Fig. 13. The convergent±divergent slit cell geometry.
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4.3. Drop breakup

From the experiments, it is found that the Newtonian and Boger ¯uid drops do not break
up even when elongated four times the initial diameter. However, the drops made of PAM
solution do break. The breakup is observed at the extremity of the drop elongated in the
convergent region and entering the parallel plate section of the pro®le (see Fig. 14). At this
position, the tail of the drop is stretched, then breaks up into small droplets. A linear relation
between the time-to-break and the maximum velocity is found. The critical drop diameter for
the breakup decreases as the ¯ow rate increases.
It is worth noting that by contrast to the Boger ¯uid (whose shear viscosity is nearly

constant), the solution of PAM is pseudoplastic. Experiments are still being conducted to
examine whether the observed breakup is due to the pseudoplasticity or to such factors as the
slit gap to drop diameter (h/D0) ratio.

5. Comparison between theory and experiment

Additional computational results based on the BEM are now presented. Comparison is made
between theory and experiment wherever possible to further validate the proposed formulation
and algorithm. Given the large ratio of the span to the height of the channel, the ambient ¯ow
may be assumed to be two-dimensional. However, in the presence of a drop, the drop
deformation and the ¯ow around the drop are three-dimensional. In this case a direct
quantitative comparison between theory and experiment is meaningless. Nevertheless, a
qualitative agreement between the two-dimensional theory and experiment is achieved upon
comparison.

5.1. The basic ¯ow

For a Newtonian matrix, the ¯ow on the centerline of the convergence is purely extensional.
Here, the centerline ¯ow velocity, V, is inversely proportional to the axial distance from the
convergence point, r, inside the slit: V � r= constant, whereas the extensional ¯ow rate is
proportional to the square of the position, e.r 2=const. (see Fig. 15). As de®ned in Fig. 13, r is

Table 1

Fluid systems used in experiment

Matrix ¯uid Drop ¯uid System Zs (Pas) Zd (Pas) RZ n (mN/m)a

PDMSb PB N9 60 530 8.83 3.65
PDMS PB N3 60 180 3 3.65
PDMS 1% PAM in H2O (solution l1) VE10 60 600 10 12.98

Corn syrup 0.075% HMW PS in PS-DOP 28/72 (Boger PS) VE2.2 6.0 13.5 2.25 5.87

a

The interfacial tension was computed from Girifalco and Good (1957).
b

The following abbreviations are used in the text: PDMS, polydimethylsiloxane; PB, polybutene-1; PAM, poly-
acrylamide; PS, polystyrene; HMW PS, high molecular weight polystyrene; DOP, di(ethylhexyl)phthalate.
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the axial position coordinate, with r = 0 coinciding with the origin of the convergence just
after the entrance to slit. Fig. 15 shows the velocity pro®le based on the BEM with no drop in
the channel. Good agreement is obtained between theoretical and experimental results. This
agreement shows that: (i) the basic BEM implementation is accurate; and (ii) 3D e�ects are not
signi®cant as far as the ambient ¯ow inside the channel ¯ow is concerned.

5.2. Drop deformation during the ¯ow

Experiments were carried out using drop/matrix pairs with the viscosity ratio: RZ=3, 8.8,
and 10, at di�erent ¯ow rates. The deformability, d, was determined from the recorded drop
deformation in the convergent and the divergent parts of the cell. An example of the result is
shown in Fig. 16 for PB/PDMS system with the viscosity ratio, RZ=8.8 (black points). In the

Fig. 14. Drop breakup at the slit entrance. The time sequence is indicated: left up, left down, right up, and right

down.
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®gure the data computed from the 2D BEM are also shown (open squares). Note that the
position 3.3 cm corresponds to the entrance to the slit cell and zero the end of the convergence
inside the slit. The 2D BEM prediction should be equated to 3D crossectional deformability of
an in®nitely long cylindrical drop ¯owing through the slit cell. As the data in Fig. 16 indicate,
the BEM computations predict smaller drop deformability than that observed in 3D
experiment. The comparison thus indicates that long drops (®bers) placed transversally to the
¯ow tend to deform less than shorter drops with the same cross sectional area.

5.3. In¯uence of the initial position

The BEM is also used to simulate the drop deformation in the convergent-divergent ¯ow of
the slit cell used in the model experiments (the cell is shown in Fig. 13). In this case, the 2D
computations are limited to the conical converging part, using Newtonian drops with RZ=2, 3,

Fig. 16. Drop deformability, d, as a function of position in the convergent part of the cell, r. Full circles are
experimental, obtained for the PB/PDMS system with RZ=8.8. The line is a least-squares ®t to the second order
polynomial. The open squares were computed using the BEM.

Fig. 15. The extensional ¯ow velocity as a function of the position in the convergent part (r, from the slit position

outward, see Fig. 13). Points are experimental, and the line shows the predicted hyperbolic dependence predicted by
the BEM.
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Fig. 17. Computed 2D deformation on the channel axis of a Newtonian drop as a function of its location inside the
conical convergence. The initial drop diameter is D0=0.0125, and its viscosity ratio: RZ=3. The channel geometry is
shown in Fig. 13.

R.E. Khayat et al. / International Journal of Multiphase Flow 26 (2000) 17±4440



8 and 10. Since the experiments were conducted with initially placing a drop either on or o�
the ¯ow axis, the computations are carried out to simulate these two situations as well.
Examples of these computations are shown in Figs. 17 and 18 for drops moving on and o�

the axis, respectively. The initial drop diameter D0=0.0125 and the viscosity ratio RZ=3. The
origin of the BEM grid coincides with the lower left angle of the cell shown in Fig. 13.
Agreement between theory and experimental visualization is generally good. This becomes

Fig. 18. Computed 2D deformation o� the channel axis of a Newtonian drop as a function of its location inside the
conical convergence. The initial drop diameter is D0=0.0125, and its viscosity ratio: RZ=3. The channel geometry is

shown in Fig. 13.
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Fig. 19. Deformation of PB drop in PDMS matrix, RZ=3.0. The initial drop diameter is about 0.0125. Compare

these shapes with BEM results in Fig. 17, positions 1.4 and 3.0.
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evident upon comparison between the evolution of the computed drop shape in Fig. 17 and the
visualized shape in Fig. 19. Even a quantitative agreement is reached for the drop moving
along the channel axis despite the limitations of the theory. This is con®rmed upon comparison
the drop shape at positions 1.4 (5th image) and 3.0 (11th image) in Fig. 18 with the
observations presented in Fig. 19. Once again, agreement is not expected since the ¯ow in
reality becomes highly dimensional as the drop approaches the channel wall.

6. Conclusions

The in¯uence of shear and elongation on drop deformation is investigated by examining the
e�ects of ¯ow geometry and material properties of the drop-matrix system of Newtonian and
viscoelastic ¯uids. Such e�ects include the drop size, viscosity ratio, initial position of the drop
relative to the channel axis (vertical shift), initial position relative to the neck center along the
channel axis (horizontal shift), interfacial tension and ¯uid elasticity. Both theory and
experiment are presented.
For a relatively low viscosity ratio, RZ=2, the deformation of drops placed on the channel

axis is independent of the initial drop diameter D0=0.02ÿ0.1. However, as RZ increases, the
deformation decreases with decrease of D0 and with increase of RZ. Furthermore, for the larger
drops and higher RZ there is a loss of shape recovery (symmetry). The magnitude of the drop-
to-matrix deformation in extensional ¯ow (on the channel axis) is found to be in a qualitative
agreement with small perturbation theory.
The initial vertical displacement of the drop relative to the channel axis in¯uences the rate and

magnitude of drop deformation. However, these e�ects are strongly altered by RZ. For RZE4, the
shear ¯ow increases the drop residence time in the channel, which in turn enhances the total
deformation. On the other hand, for higher values of the viscosity ratio, the drops showed little
deformation, tumbling along the channel, and being alternatively stretched or compressed.
During the convergent ¯ow of two dropsÐone viscoelastic (Maxwellian) and the second

Newtonian (both having the same viscosity ratio, RZ)Ðthe former initially deforms more than
the latter. Unlike the viscosity ratio, the relaxation-time ratio is not a similarity parameter in
problem. Good agreement is obtained between the BEM 2D computations and experimental
data for ¯ow of immiscible liquids through a slit. The agreement is limited to drops with
diameter signi®cantly smaller than the slit gap, thus not a�ected by the wall e�ects.
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